虽然训练后量化受到普及,但由于其逃避访问原始的完整培训数据集,但其性能差也源于此限制。为了减轻这种限制,在本文中,我们利用零击量化引入的合成数据与校准数据集,我们提出了一种细粒度的数据分布对准(FDDA)方法来提高训练后量化的性能。该方法基于我们在训练网络的深层观察到的批量归一化统计(BNS)的两个重要属性,即,阶级间分离和级别的含量。为了保留这种细粒度分布信息:1)我们计算校准数据集的每级BNS作为每个类的BNS中心,并提出了BNS集中丢失,以强制不同类的合成数据分布靠近其自己的中心。 2)我们将高斯噪声添加到中心中,以模仿压力,并提出BNS扭曲的损失,以强迫同一类的合成数据分布接近扭曲的中心。通过引入这两个细粒度的损失,我们的方法显示了在想象中心上的最先进的性能,特别是当第一层和最后一层也被量化为低比特时。我们的项目可在https://github.com/zysxmu/fdda获得。
translated by 谷歌翻译
灵感来自生物进化,我们通过比喻与经过验证的实用进化算法(EA)进行了类比的愿景变压器的合理性,并导致它们两者都有一致的数学表示。类似于EA的动态局部人口,我们改善了现有的变压器结构,并提出了更有效的吃模型,并设计任务相关的头来处理不同的任务更灵活。此外,我们将空间填充曲线介绍到电流视觉变压器中以将图像数据序列为均匀的顺序格式。因此,我们可以设计一个统一的Eat框架来解决多模式任务,将网络架构与数据格式自适应分开。与最近的视觉变压器工作相比,我们的方法对ImageNet分类任务进行了最先进的结果,同时具有较小的参数和更高的吞吐量。我们进一步开展多模态任务,以展示统一的饮食的优越性,例如基于文本的图像检索,我们的方法在CSS数据集上的基线上通过+3.7点提高了+3.7点。
translated by 谷歌翻译
先前的研究证明,黑盒模型的功能可以被完全概率输出偷走。但是,在更实用的硬牌环境下,我们观察到现有的方法遭受灾难性的性能降解。我们认为这是由于概率预测中缺乏丰富的信息以及硬标签引起的过度拟合。为此,我们提出了一种称为\ emph {black-box disector}的新型硬标签模型窃取方法,该方法由两个基于擦除的模块组成。一种是一种凸轮驱动的擦除策略,旨在增加受害者模型中隐藏在硬标签中的信息能力。另一个是一个基于随机的自我知识蒸馏模块,该模块利用替代模型的软标签来减轻过度拟合。在四个广泛使用的数据集上进行的广泛实验始终表明,我们的方法优于最先进的方法,最多提高了$ 8.27 \%$。我们还验证了我们方法对现实世界API和防御方法的有效性和实际潜力。此外,我们的方法促进了其他下游任务,\ emph {i.e。},转移对抗攻击。
translated by 谷歌翻译
A storyboard is a roadmap for video creation which consists of shot-by-shot images to visualize key plots in a text synopsis. Creating video storyboards however remains challenging which not only requires association between high-level texts and images, but also demands for long-term reasoning to make transitions smooth across shots. In this paper, we propose a new task called Text synopsis to Video Storyboard (TeViS) which aims to retrieve an ordered sequence of images to visualize the text synopsis. We construct a MovieNet-TeViS benchmark based on the public MovieNet dataset. It contains 10K text synopses each paired with keyframes that are manually selected from corresponding movies by considering both relevance and cinematic coherence. We also present an encoder-decoder baseline for the task. The model uses a pretrained vision-and-language model to improve high-level text-image matching. To improve coherence in long-term shots, we further propose to pre-train the decoder on large-scale movie frames without text. Experimental results demonstrate that our proposed model significantly outperforms other models to create text-relevant and coherent storyboards. Nevertheless, there is still a large gap compared to human performance suggesting room for promising future work.
translated by 谷歌翻译
Video-Text检索是一类跨模式表示学习问题,其目标是选择与给定文本查询和候选视频库之间的文本查询相对应的视频。视觉训练预处理的对比范式在大规模数据集和统一的变压器体系结构中表现出了有希望的成功,并证明了联合潜在空间的力量。尽管如此,视觉域和文本域之间的固有差异仍未被消除,并且将不同的模态投射到联合潜在空间可能会导致单个模式内的信息扭曲。为了克服上述问题,我们提出了一种新的机制,可以学习从源模式空间$ \ mathcal {s} $到目标模态空间$ \ mathcal {t} $的新颖机制桥接视觉和文本域之间的差距。此外,为了保持翻译之间的循环一致性,我们采用了一个循环损失,涉及从$ \ MATHCAL {S} $到预测的目标空间$ \ Mathcal {t'} $的两个前向翻译,以及$ \ Mathcal {t't'的向后翻译} $返回$ \ Mathcal {s} $。在MSR-VTT,MSVD和DIDEMO数据集上进行的广泛实验证明了我们LAT方法的优势和有效性与香草的最新方法相比。
translated by 谷歌翻译
This paper focuses on designing efficient models with low parameters and FLOPs for dense predictions. Even though CNN-based lightweight methods have achieved stunning results after years of research, trading-off model accuracy and constrained resources still need further improvements. This work rethinks the essential unity of efficient Inverted Residual Block in MobileNetv2 and effective Transformer in ViT, inductively abstracting a general concept of Meta-Mobile Block, and we argue that the specific instantiation is very important to model performance though sharing the same framework. Motivated by this phenomenon, we deduce a simple yet efficient modern \textbf{I}nverted \textbf{R}esidual \textbf{M}obile \textbf{B}lock (iRMB) for mobile applications, which absorbs CNN-like efficiency to model short-distance dependency and Transformer-like dynamic modeling capability to learn long-distance interactions. Furthermore, we design a ResNet-like 4-phase \textbf{E}fficient \textbf{MO}del (EMO) based only on a series of iRMBs for dense applications. Massive experiments on ImageNet-1K, COCO2017, and ADE20K benchmarks demonstrate the superiority of our EMO over state-of-the-art methods, \eg, our EMO-1M/2M/5M achieve 71.5, 75.1, and 78.4 Top-1 that surpass \textbf{SoTA} CNN-/Transformer-based models, while trading-off the model accuracy and efficiency well.
translated by 谷歌翻译
Supervised Question Answering systems (QA systems) rely on domain-specific human-labeled data for training. Unsupervised QA systems generate their own question-answer training pairs, typically using secondary knowledge sources to achieve this outcome. Our approach (called PIE-QG) uses Open Information Extraction (OpenIE) to generate synthetic training questions from paraphrased passages and uses the question-answer pairs as training data for a language model for a state-of-the-art QA system based on BERT. Triples in the form of <subject, predicate, object> are extracted from each passage, and questions are formed with subjects (or objects) and predicates while objects (or subjects) are considered as answers. Experimenting on five extractive QA datasets demonstrates that our technique achieves on-par performance with existing state-of-the-art QA systems with the benefit of being trained on an order of magnitude fewer documents and without any recourse to external reference data sources.
translated by 谷歌翻译
Transformer has achieved impressive successes for various computer vision tasks. However, most of existing studies require to pretrain the Transformer backbone on a large-scale labeled dataset (e.g., ImageNet) for achieving satisfactory performance, which is usually unavailable for medical images. Additionally, due to the gap between medical and natural images, the improvement generated by the ImageNet pretrained weights significantly degrades while transferring the weights to medical image processing tasks. In this paper, we propose Bootstrap Own Latent of Transformer (BOLT), a self-supervised learning approach specifically for medical image classification with the Transformer backbone. Our BOLT consists of two networks, namely online and target branches, for self-supervised representation learning. Concretely, the online network is trained to predict the target network representation of the same patch embedding tokens with a different perturbation. To maximally excavate the impact of Transformer from limited medical data, we propose an auxiliary difficulty ranking task. The Transformer is enforced to identify which branch (i.e., online/target) is processing the more difficult perturbed tokens. Overall, the Transformer endeavours itself to distill the transformation-invariant features from the perturbed tokens to simultaneously achieve difficulty measurement and maintain the consistency of self-supervised representations. The proposed BOLT is evaluated on three medical image processing tasks, i.e., skin lesion classification, knee fatigue fracture grading and diabetic retinopathy grading. The experimental results validate the superiority of our BOLT for medical image classification, compared to ImageNet pretrained weights and state-of-the-art self-supervised learning approaches.
translated by 谷歌翻译
Knowledge graph embedding (KGE), which maps entities and relations in a knowledge graph into continuous vector spaces, has achieved great success in predicting missing links in knowledge graphs. However, knowledge graphs often contain incomplete triples that are difficult to inductively infer by KGEs. To address this challenge, we resort to analogical inference and propose a novel and general self-supervised framework AnKGE to enhance KGE models with analogical inference capability. We propose an analogical object retriever that retrieves appropriate analogical objects from entity-level, relation-level, and triple-level. And in AnKGE, we train an analogy function for each level of analogical inference with the original element embedding from a well-trained KGE model as input, which outputs the analogical object embedding. In order to combine inductive inference capability from the original KGE model and analogical inference capability enhanced by AnKGE, we interpolate the analogy score with the base model score and introduce the adaptive weights in the score function for prediction. Through extensive experiments on FB15k-237 and WN18RR datasets, we show that AnKGE achieves competitive results on link prediction task and well performs analogical inference.
translated by 谷歌翻译
Digital engineering transformation is a crucial process for the engineering paradigm shifts in the fourth industrial revolution (4IR), and artificial intelligence (AI) is a critical enabling technology in digital engineering transformation. This article discusses the following research questions: What are the fundamental changes in the 4IR? More specifically, what are the fundamental changes in engineering? What is digital engineering? What are the main uncertainties there? What is trustworthy AI? Why is it important today? What are emerging engineering paradigm shifts in the 4IR? What is the relationship between the data-intensive paradigm and digital engineering transformation? What should we do for digitalization? From investigating the pattern of industrial revolutions, this article argues that ubiquitous machine intelligence (uMI) is the defining power brought by the 4IR. Digitalization is a condition to leverage ubiquitous machine intelligence. Digital engineering transformation towards Industry 4.0 has three essential building blocks: digitalization of engineering, leveraging ubiquitous machine intelligence, and building digital trust and security. The engineering design community at large is facing an excellent opportunity to bring the new capabilities of ubiquitous machine intelligence and trustworthy AI principles, as well as digital trust, together in various engineering systems design to ensure the trustworthiness of systems in Industry 4.0.
translated by 谷歌翻译